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Abstract  

 There are so many algorithms for extracting 
frequent item sets.. These are very important for mining 
association rules as well as for many other data mining tasks 
. So many methods have been implemented for mining 
frequent item sets using a prefix tree structure known as 
frequent Pattern Tree (FP-Tree) for storing all the 
information about frequent item sets. In this paper we 
propose a new technique called fp-array technique based on 
FP-Tree Data structure, that reduces the traverse time of FP-
Trees and we can improve the performance of FP-Tree 
based algorithms. This FP-array technique  will give the 
good results for sparse data sets. It consumes more memory 
when we use the sparse data sets , consumes less memory 
for dense data sets and the performance of this algorithm is 
very well when the minimum support is low.  

Index Terms – frequent Pattern - Tree, frequent item sets, 
association rules. 

1.INTRODUCTION  

Mining of frequent item sets (FIS) is a fundamental problem 
for mining association rules [1] [2]. It also plays an 
important role in other data mining tasks such as sequential 
patterns, episodes, multi dimensional patterns[7] [8].etc.The 
description of problem is as follows , Let I={i1,i2….in} be a 
set of items and D be a multi set of transactions, where each 
transaction T is a set of items such that T  .For any      ,we 
say that a transaction T contains X if X  T.The set X is 
called an item set. The set of all X  I (the powerset of I) 
naturally forms a lattice, called the item set lattice. The 
count of an item set X is the number of transactions in D 
that contain X.The support of an item set X is the proportion 
of transactions in D that contain X. Thus ,if the total number 
of transactions in D is n, then the support of  X is divided by 
n.100 percent. An item set X is called frequent if its support 

is greater than or equal to some given percentage s, where s 
is called the minimum support. 

When a transaction database is very dense and the minimum 
support is very low, i.e., when the database contains a 
significant number of large frequent item sets, mining all 
frequent item sets might not be a good idea. For example, if 
there is a frequent item set with size l, then all 2l nonempty 
subsets of the item set have to be generated. However, since 
frequent item sets are downward closed in the item set 
lattice, meaning that any subset of a frequent item set is 
frequent, it is sufficient to discover only all the maximal 
frequent item sets (MFIs). A frequent item set X is called 
maximal if there does not exist frequent item set Y such that 
X subset Y . Mining frequent item sets can thus be reduced 
to mining a “border” in the item set lattice. All item sets 
above the border are infrequent and those that are below the 
border are all frequent. Therefore, some existing algorithms 
only mine maximal frequent item sets. 

However, mining only MFIs has the following deficiency: 
From an MFI and its support s, we know that all its subsets 
are frequent and the support of any of its subset is not less 
than s, but we do not know the exact value of the support. 
For generating association rules, we do need the support of 
all frequent item sets. To solve this problem, another type of 
a frequent item set, called closed frequent item set (CFI), 
was proposed in . A frequent item set X is closed if none of 
its proper supersets have the same support. Any frequent 
item set has the support of its smallest closed superset. The 
set of all closed frequent item sets thus contains complete 
information for generating association rules. In many cases, 
the number of CFIs is greater than the number of MFIs, 
although still far less than the number of FIs. 

1.1 Mining FIS 
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The first algorithm Apriori for mining frequent item sets 
was proposed by Agarwal et al. It is a bottom-up breadth 
first search algorithm. This uses hash-trees to store frequent 
item sets and candidate item sets. It needs l database scans if 
the size of the largest frequent item set is l .  

The Next algorithm FP-Growth method (novel algorithm) 
for mining frequent item sets was proposed by Han et al. It 
is a bottom-up depth first search algorithm. This uses FP-
Tree to store frequency information of the original data base 
in a compressed form . It needs only 2 database scans and 
no candidate generation is required. 

1.2 Mining Maximal frequent Item sets 

Several algorithms have been proposed for Mining Maximal 
frequent item sets. These algorithms are different mainly in 
the adopted main memory data structures and in the strategy 
to visit the search space.. They are MAFIA, GenMax ..etc 
and these algorithms have some drawbacks . Smart Miner , 
also a depth-first algorithm, uses a technique to quickly 
prune candidate frequent  item sets in the item set  lattice. 
The technique gathers “tail” information for a node used to 
find the next node during depth-first mining in the lattice. 
Items are dynamically reordered based on the tail 
information. Smart Miner is about 10 times faster than 
MAFIA and GenMax. 

1.3 Mining Closed frequent Item sets 

Several algorithms have been proposed for Mining Maximal 
frequent item sets are A-Close , CHARM and etc.. . a 
different algorithm CLOSET for mining CFIs was proposed 
by pei at al. In this The FP-tree 

structure was used and some optimizations for reducing the 
search space were proposed. The experimental results 
reported in showed that CLOSET is faster than CHARM 
and A-close. CLOSET was extended to CLOSET+ by Wang 
et al. in to find the best strategies for mining frequent closed 
item sets. CLOSET+ uses data structures and data traversal 
strategies that depend on the characteristics of the data set to 
be mined. Experimental results in  showed that 
CLOSET+outperformed all previous algorithms. 

1.4 Contributions 

One of the important contributions of our work is a FP-array 
technique that uses a special data structure, called an 
 FP-array, to greatly improve the performance of the 
algorithms  on FP-trees.   The FP-tree has been shown to be a 
very efficient data structure for mining frequent patterns [3], 
[4], [10], [11], [16] and its variation has been used for 
“iceberg” data cube computation [9]. We first demonstrate 
that the FP-array technique drastically  speeds up the FP-
growth method on sparse data sets, since it now needs to 
scan each FP-tree only once for each recursive call 

emanating from it. This technique is then applied to our 
previous algorithm FP-max for mining maximal frequent 
item sets[3][4]. We call the new method FP max*. For 
checking  maximal frequent item sets used MFI-Tree and 
for checking closedness of frequent item sets used a tree 
called CFI-Tree. 

 

 

2 DISCOVERING frequent Item set’s 

2.1 The FP-Tree Structure and FP-Growth Algorithm 

The algorithm Frequent Pattern-Growth method[3] [4] 
(novel algorithm) for mining frequent item sets was 
proposed by Han et al. It is a bottom-up depth first search 
algorithm. This uses FP-Tree to store frequency information 
of the original data base in a compressed form .  
Compression is achieved by building the tree in such a way 
that overlapping item sets share prefixes of the 
corresponding branches. 

The FP-growth method relies on the following principle: If 
X and Y are two item sets, the count of item set X U Y in 
the database[5]  is exactly that of Y in the restriction of the 
database to those transactions containing X. This restriction 
of the database is called the conditional pattern base of X 
and the FP-tree constructed from the conditional pattern 
base is called X0s conditional FP-tree, which we denote by 
TX. We can view the FP-tree constructed from the initial 
database as T;, the conditional FP-tree for the empty item 
set. Note that, for any item set Y that is frequent in the 
conditional pattern base of X, the set X � Y is a frequent 
item set in the original database . 

Let’s an item i in Tx.header, by following the linked list 
starting at i in Tx. header, all branches that contain item i 
are visited. The portion of these branches from i to the root 
forms the conditional pattern base of X U {I} (X union i), so 
the traversal obtains all frequent items in this conditional 
pattern base. The FP-growth method then constructs the 
conditional FP-tree Tx U {i} by first initializing its header 
table based on the frequent items found, then revisiting the 
branches of TX along the linked list of i and inserting the 
corresponding item sets in T xU{i}. Note that the order of 
items can be different in TX and  T xU{i}.. As an example, 
the conditional pattern base of ffg and the conditional FP-
tree Tffg for the database in Fig. 1a is shown in Fig. 1c. The 
above procedure is applied recursively, and it stops when 
the resulting new FPtree contains only one branch. The 
complete set of frequent item sets can be generated from all 
single-branch FP-trees. 
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Fig. 1. An FP-tree example. (a) A database. (b) The FP-tree for 
the database (minimum support = 20 percent). 

 

Fig. 2. Two FP-array examples. (a) A;. (b) A{g}. 

 

2. The frequent Pair -Array Technique 

In fp-growth method we can construct conditional FP-Trees 
after constructing FP-Tree. We found out that 80% of time 
was used for traversing FP-trees. To reduce the traversal 
time we can use a data structure called FP-Array. for each 
item j in the header of a conditional FP-tree Tx, two 
traversals of Tx are needed for constructing the new 
conditional FP-tree TXU{j}  The first traversal finds all 
frequent items in the conditional pattern base of X U {j} and 
initializes the FP-tree TXU{j}  by constructing its header 
table. The second traversal constructs the new tree TXU{j} . 
We can omit the first scan of TX by constructing a frequent 
pairs array Ax while building Tx. We initialize Tx with an 
attribute Ax. 

 Definition. Let T be a conditional FP-tree and I= {j1;i2; . . im}  
be the set of items in T header. A frequent pairs array (FP- array) 
of T is a (m—1)x (m-1) matrix, where each element of  the matrix 
corresponds to the counter of an ordered pair of items in I.  
Obviously, there is no need to set a counter for both item 
Pairs( ij,ik) and (ik; ij). Therefore, we only store the 
counters for all pairs (ik; ij)  such that k < j.  
We use an example to explain the construction of the FP-
tree supposing minimum support is 20 percent. We sort the 
frequent items b:5,a:5, d; a, g:4, f:2, e:2, c:2. This is the 

order of items is the header table Tb. During the second 
scan of the database, we will construct Tb and an FP-array 
Ab, as shown in Fig. 2a. All cells in the FP-array are 
initialized to 0.  

 
According to the definition of an FP-array, in Ab, each cell 
is a counter of a pair of items. Cell Ab[c, b] is the counter 
item set {c, b}, cell Ab[c,a]and so forth. During the second 
scan for constructing Tb,  for each transaction, all frequent 
items in the transaction are extracted. Suppose these items 
form item set J. To insert J into Tb, the items in J are sorted 
according to the order in Tb.header. When we insert J into 
Tb, at the same time Ab[i,j] incremented by 1 if {I, j} is 
contained in J. For instance, or the second transaction,{b, 
a, f, g}  is extracted (item h is infrequent) and sorted as b, 
a, g, f. This item set is inserted into Tb; as usual and, at the 
same time, Ab[f,b], Ab[f,a], Ab[f,g], Ab[g, b], Ab[g, a], 
A[a, b] are all incremented by 1. After the second scan, the 
FP-array Ab,  contains the countsof all pairs of frequent 
items, as shown in Fig. 2a.  
 
Next, the FP-growth method is recursively called to mine 
frequent item sets for each item in Tb.header. However, 
now  for each item i, instead of traversing Tb, along the 
linked list starting at i to get all frequent items in i’s 
conditional pattern base, A; gives all frequent items for i. 
For example, by checking the third line in the table for A;, 
frequent items b; a; d for the conditional pattern base of g 
can be obtained. Sorting them according to their counts, we 
get b, d, a. Therefore, for each item i in Tb, the FP-array 
Ab makes the first traversal of Tb, unnecessary and each 
Tb can be initialized directly from Ab. 
 
For the same reason, from a conditional FP-tree Tx, when 
we construct a new conditional FP-tree for X U {i} , for an 
item i, a new FP-array A xU {i}g is calculated. During the 
construction of the new FP-tree TxU{i}, the FP-array AX 
U {i} is filled. As an example, from the FP-tree in Fig. 1b, 
if the conditional FP-tree T{g} is constructed, the FP-rray 
A{g} will be in Fig. 2b. This FP-array is constructed as 
follows: From the FP-array Ab, we know that the frequent 
items in the conditional pattern base of {g} are, in 
descending order of their support, b, d, a. By following the 
linked list of g, from the first node, we get {b, d} :2, so it is 
inserted as (b :2;d :2) into the new FP-tree T{g}. At the 
same time, A{g}[b, d] is incremented by 1. From the 
second node in the linked list, {b, g} :1 is extracted and it 
is inserted as (b :1;a :1) into T{g}. At the same time, 
A{g}[b,d] is incremented by 1. From the third node in the 
linked list, {a, d} :1 is extracted and it is inserted as (d :1;a 
:1) into T{g}. At the same time, A{g}[d, a]is incremented 
by 1. Since there are no other nodes in the linked list, the 
construction of T{g} is finished and FP-arrayA{g} is ready 
to be used for construction of FP-trees at the next level of 
recursion. The construction of FP-arrays and FP-trees 
continues until the FP-growth method terminates.       
 
Based on the foregoing discussion, we define a variant of 
the FP-tree structure in which, besides all attributes given 
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in [14], an FP-tree also has an attribute, FP-array, which 
contains the corresponding FP-array.     
 
Let us analyze the size of an FP-array first. Suppose the 
number of frequent items in the first FP-tree Tb is n. Then, 
the size of the associated FP-array is proportional to  
�n-1 i= n(n-1)/2, which is the same as the number of 
candidate large 2-item sets in Apriori in [7]. The FP-trees 
constructed from the first FP-tree have fewer frequent 
items, so the sizes of the associated FP-arrays decrease. At 
any time when the space for an FP-tree is freed, so is the 
space for its FP-array.  There are some limitations for 
using the FP-array technique. One potential problem is the 
size of the FP-array. When the number of items in Tb is 
small, the size of the FP-array is not very big. For example, 
if there are 5,000 frequent items in the original database 
and the size of an integer is4 bytes, the FP-array takes only 
50 megabytes or so. However, when n is large, n(n-1)/2  
becomes an extremely large number. At this case, the FP-
array technique will reduce the significance of the FP-
growth method, since the method mines frequent item sets 
without generating any candidate frequent item sets. Thus, 
one solution is to simply give up the FP-array technique 
until the number of items in an FP-tree is small enough. 
Another possible solution is to   reduce the size of the FP-
array. This can be done by generating a much smaller set 
of candidate large two-item sets as in [15] and only store in 
memory cells of the FP-array corresponding to a two-item 
set in the smaller set. However, in this paper, we suppose 
the main memory is big enough for all FP-arrays. 
 
The FP-array technique works very well, especially when 
the data set is sparse and very large. The FP-tree for a 
sparse data set and the recursively constructed FP-trees 
will be big and bushy because there are not many shared 
common prefixes among the FIs in the transactions. The 
FP-arrays save traversal time for all items and the next 
level FP-trees can be initialized directly. In this case, the 
time saved by omitting the first traversals is far greater 
than the time needed for accumulating counts in the 
associated FP-arrays.           
 
Even for the FP-trees of sparse data sets, the first levels of 
recursively constructed FP-trees for the first items in a 
header table are always conditional FP-trees for the most 
common prefixes. We can therefore expect the traversal 
times for the first items in a header table to be fairly short, 
so the cells for these items are unnecessary in the FP-array. 
As an example, in Fig. 2a, since b, a, and d are the first 
three items in the header table, the first two lines do not 
have to be calculated, thus saving counting time. Note that 
the data sets (the conditional pattern bases) change during 
the different depths of the recursion. In order to estimate 
whether a data set is sparse or dense, during the 
construction of each FP-tree, we count the number of 
nodes in each level of the tree. Based on experiments, we 
found that if the upper quarter of the tree contains less than 
15 percent of the total number of nodes, we are most likely 
dealing with a dense data set. Otherwise, the data set is 

likely to be sparse.                            
 
 2.2 FP-growth*: An Improved FP-Growth Method 
 
Fig. 3 contains the pseudo code for our new method 
FP-growth*. The procedure has an FP-tree T as parameter. 
T has attributes: base, header, and FP-array. T.base 
contains the item set X for which T is a conditional FP-
tree, the attribute header contains the header table, and 
T:FP-array contains the FP-array Ax. 
In FP-growth*, line 6 tests if the FP-array of the current 
FP- 
tree exists. If the FP-tree corresponds to a sparse data set, 
its FP-array exists, and line 7 constructs the header table of 
the new conditional FP-tree from the FP-array directly. 
One FP-tree traversal is saved for this item compared with 
the FP-growth method in [7]. In line 9, during the 
construction, we also count the nodes in the different levels 
of the tree in order to estimate whether we shall really 
calculate the FP-array or just set TY :FP-array as 
undefined.         
 
PROCEDURE FP growth * 
 
Input : A conditional FP-Tree T 
 
Output : The complete set of all  FI’s corresponding to T. 
 
Method: 
 

1. If T only contains a single  branch B 
2. For each subset  Y of the set of item in B 
3.   Output  item set Y U T.base  with  count = 

smallest  count of nodes  in Y: 
4.  Else   for each i in T.header  do begin 
5.  Output  Y =T.base U{i} with i count ; 
6. If  T.FP-array is defined 
7.     Construct  a new header  table  for Y’s  FP-

Tree from FP-array. 
8. Else construct a new  header from the table T. 
9. Construct Y’s  conditional  FP-Tree  Ty  and 

possible  its FP-array Ay; 
10. If  T≠ Ф 
11. Call FP-growth *(Ty); 
12. end 

 
 
figure 3 
 
2.3 FP-MAX*: MINING MFI’S 
 
In [6], we developed FP-max, another method that mines 
maximal frequent item sets using the FP-tree structure. 
Since the FP-array technique speeds up the FP-growth 
method for sparse data sets, we can expect that it will be 
useful in FP-max too. This gives us an improved method, 
FP-max*. Compared to FP-max, in addition to the FP-array 
technique, the improved method FP-max* also has a more 
efficient maximality checking approach, as well as several 

G. Nageswara Rao et al / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2677-2685.

2680



other optimizations. It turns out that FP-max* outperforms 
FP-max for all cases we discussed in [6]. 
 
Fig. 4 gives algorithm FP-max*. In the figure, three 
attributes of T, T:base, T:header, and T:FP-array, are the 
same as the attributes we used in FP-growth*. The first call 
of FP-max* will be for the FP-tree constructed from the 
original database, and it has an empty MFI-tree. Before a 
recursive call FP-max*(T,M), we already know from line 
10 that the set containing T:base and all items in T is not a 
subset of any existing MFI. During the recursion, if there is 
only one branch in T, the path in the branch together with 
T:base is anMFI of the database. In line 2, theMFI is 
inserted MIf the FP-tree is not a single-branch tree, then 
for each item i in T.header, we start preparing for the 
recursive call FP-max*(Ty ,;My), for Y = T.base U{i}. The 
items in the header table of T are processed in increasing 
order of frequency, so that maximal frequent item sets will 
be found before any of their frequent subsets. Lines 5 to 8 
use the FP- array if it is defined or traverse Tx. Line 10 
calls function maximality_checking to check if Y together 
with all frequent items in Y ‘s conditional pattern base is a 
subset of any existing MFI in M (thus, we do superset 
pruning here). If maximality checking returns false, FP-
max* will be called recursively, with (Ty , My). The 
implementation of function maximality_checking will be 
explained shortly. 
 
Procedure FP-max *(T,M) 
 
Input : T an FP-tree 
       
          M, the MFI-Tree for T.base 
Output: Updated M 
 
Method: 
 

1. if   T only contains  a single  branch B 
2.       insert B into M 
3. else  for each i in T.header  do begin 
4.     set Y= T.base U {i} 
5.    if  T.FP-array  is defined 
6.       Let tail be the set of  frequent  items for i in 

T.FP array 
7.   else   
8.        let tail be the set of frequent items  in i’s 

condition  pattern base; 
9.    sort tail decreasing order  of the item’s counts; 
10.  if not maximality_checking (Y U tail, M) 
11.           Construct  Y’s coditinal FP_tree  Ty and 

possibly  its FP_array Ay; 
12.          Initialize  Y’s conditional  MFI-tree  My; 
13.         Call  FP-max * (Ty,My) 
14.         Merge  My with M. 
15. end 

 
Figure 4: FP-max*  Algorithm 
 
set containing T:base and all items in T is not a subset of 

any existing MFI. During the recursion, if there is only 
one branch in T, the path in the branch together with 
T:base is anMFI of the database. In line 2, theMFI is 
inserted into M. If the FP-tree is not a single-branch tree, 
then for each item i in T:header, we start preparing for the 
recursive call FP-max* (Ty ,My) , for Y =T.base  U {i}. 
The items in the header table of T are processed in 
increasing order of frequency, so that maximal frequent 
item sets will be found before any of their frequent subsets. 
Lines 5 to 8 use the FP-array if it is defined or traverse TX. 
Line 10 calls function maximality_checking to check if Y 
together with all frequent items in Y ‘s conditional pattern 
base is a subset of any existing MFI in M (thus, we do 
superset pruning here). If maximality_checking returns 
false, FP-max* will be called recursively, with (Ty , My) 
Note that, before and after calling maximality_checking,if 
Y U tail is not a subset of any MFI, we still do not know 
whether Y U tail is frequent. If, by constructing Y ‘s 
conditional FP-tree Ty , we find out that Ty only has a 
single branch, we can conclude that Y U tail is frequent. 
Since Y U tail was not a subset of any previously 
discovered MFI, it is maximal and will be inserted into 
My.   The function maximality_checking works as follows: 
Suppose tail = i1, i2; ... ik, in decreasing order of 
frequency according to M:header. By following the linked 
list of ik, for each node n in the list, we test if tail is a 
subset of the ancestors of n. Here, the level of n can be 
used for saving comparison time. First, we test if the level 
of n is smaller thank. If it is, the comparison stops because 
there are not enough ancestors of n for matching the rest of 
tail. This pruning technique is also applied as we move up 
the branch and toward the front of tail. The function 
maximality_checking returns true if tail is a subset of an 
existing MFI otherwise, false is returned. 
 
Unlike an FP-tree, which is not changed during the 
execution of the algorithm, an MFI-tree is dynamic. At 
line 12, for each Y , a new MFI-tree My is initialized from 
the preceding MFI-tree M. Then, after the recursive call, M 
is updated on line 14 to contain all newly found frequent 
item sets. In the actual implementation, we however found 
that it was more efficient to update all MFI-trees along the 
recursive path, instead of merging only at the current level. 
In other words, we omitted line 14, and instead on line 
2,Bis inserted into the current M, and also into all 
preceding MFI-trees that the implementation of the 
recursion needs to store in memory in any case. 
 
In details, at line 12, when an MFI-tree Myj   for Yj = 
i1i2 ... ij is created for the next call of FP-max*, we know 
that conditional FP-trees and conditional MFI-trees for  
Yj-1 = i1i2 ... i j-1, Yj-2= i1i2 ... ij-2 ,…., Y1= i1, and Y0 =Ф 
are all in memory. To make Myj store all already found 
MFIs that contain Yj,  Myj is initialized by extracting 
MFIs from My j-1. The initialization can be done by 
following the linked list for ij from the header table of 
 My j-1  and extracting the maximal frequent item sets 
containing   ij. Each such found item set I is sorted 
according to the order of items in Myj .header (the same 
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item order as in Tyj .header) and then inserted into Myj. 
On line 2, we have found a new MFI B in Tyj ,so B is 
inserted into Myj . since yj U B also contains yj-1, ...,y1, 
y0 and the trees My j-1  , ... My1,My0 are all in memory, to 
make these MFI-trees consistently store all already 
discovered MFIs that contain their corresponding item set, 
for each k  =0, 1,2, ... j , the MFI B U(yj_— yk ) is  
inserted into the corresponding MFI-tree Myk  . At the end 
of the execution of FP-max*, the MFI-tree My0 (i.e., MФ)  
contains all MFIs mined from the original database. Since 
FP-max* is a depth-first algorithm, it is straightforward to 
show that the maximality checking is correct. Based on the 
correctness of the FP-max method, we can conclude that 
FP-max* returns all and only the maximal frequent item 
sets in a given data set. 
 
 
In FP-max*, we also used an optimization for reducing 
the number of recursive calls. Suppose that, at some level 
of the recursion, the item order in T.header is i1, i2, ... ,ik. 
Then, starting from ik, for each item in the header table, we 
may need to do the work from line 4 to line 14. If for any 
item, say im where m ≤ k, its maximal frequent item set 
contains items i1, i2, ... , i m-1, i.e., all the items that have not 
yet called FP-max* recursively, these recursive calls can 
be 
omitted. This is because any frequent item set found by 
uch a recursive call must be a subset of  {i1, i2, ... ,im-1 } 
thus, it 
could not be maximal. 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
Figure 5.Size reduced maximal frequent  item set tree. 
 
 
 2.4 FPCLOSE:MINING CFI’S 
Recall that an item set X is closed if none of the proper 
supersets of X have the same support. For mining frequent 
closed item sets,  FPclose works similarly to FP-max*. 
They 
both mine frequent patterns from FP-trees. Whereas FP-
max* needs to check that a newly found frequent  ite- 
emset is maximal, FPclose needs to verify that the new 
frequent item set is closed. For this, we use a closed 

frequent item sets tree (CFI-tree), which is another 
variation on the FP-tree. 4.1 The CFI-Tree and Algorithm 
FPclose as in algorithm FP-max*, a newly discovered 
frequent item set can be a subset only of a previously 
discovered CFI. Like anMFI-tree, a CFI-tree depends on an 
FP-tree Tx  and is denoted as Cx. The item set X is 
represented as an attribute of T,T.base. The CFI-tree CX 
always stores all already found CFIs containing item set X 
and their counts.  
 
A newly found frequent item set Y that contains X only 
needs to be compared with the CFIs in Cx. If there is no 
proper superset of Y in Cx with the same count as Y , the 
set Y is closed.In a CFI-tree, each node in the subtree has 
four fields:item-name, count, node-link, and level. Here, 
level is still used for subset testing, as in MFI-trees. The 
count field is needed because when comparing Y with a set 
Z in the tree, we are trying to verify that it is not the case 
that Y subset of Z and Y and Z have the same count. The 
order of the items in a CFI-tree’s header table is the same 
as the order of items in header table of its corresponding  
 
 
The insertion of a CFI into a CFI-tree is similar to the 
insertion of a transaction into an FP-tree, except now the 
count of a node is not incremented, but replaced by the 
maximal count up-to-date. Fig. 6 shows some snapshots of 
the construction of a CFI-tree with respect to the FP-tree in 
Fig. 1b. The item order in the  two trees are the same 
because they are both for base. Note that insertions of CFIs 
into the top level CFI-tree will occur only after recursive 
calls have been made. In the following example, the 
insertions would be performed during various stages of the 
execution, not in bulk as the example might suggest. In Fig. 
6, a node x : l : c means that the node is for item x, that its 
level is l and that its count is c. In Fig. 6a, after inserting the 
first six CFIs into the CFI-tree, we insert ( d, g) with count 
3. Since (d , g) shares the prefix d with (d , e), only node g is 
appended and, at the same time, the count for node d is 
changed from 2 to 3. The tree in Fig. 6b contains all CFIs 
for the data set in Fig. 1a. Fig. 8 gives algorithm FPclose. 
Before calling FPclose with some (T , C), we already know 
from line 8 that there is no existing CFI X such that 1) 
T.base subset of  X and 2) T:base and X have the same 
count (this corresponds to optimization 4 in [13]). If there is 
only one single branch in T, the nodes and their counts in 
this single branch can be easily used to list the T.base-local 
closed frequent item sets. These item sets will be compared 
with the CFIs in C. If an item set is closed,  it is inserted 
into C. If the FP-tree T is not a single-branch tree, we 
execute line 6. Lines 9 to 12 use the FP-array if it is defined, 
otherwise, T is traversed. Lines 4 and 8 call function closed 
checking (Y ,C)  to check whether a frequent item set Y is 
closed. Lines 14 and 15 construct Y ‘s  conditional FP-tree 
TY and CFI-tree CY . Then,  FPclose is called recursively 
for Ty and Cy . 
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Figure 6 
 
The implementation of function closed checking is almost 
the same as the implementation of function maximality 
checking, except now we also consider the count of an item 
set. Given an item set Y ={ i1, i2, . . . , ik} with count c, 
suppose the order of the items in header table of the current 
CFI-tree is i1, i2, . . . , ik. Following the linked list of ik, for 
each node in the list, we first check if its count is equal to or 
greater than c. If it is, we then test if Y is a subset of the 
ancestors of that node. Here, the level of a node can also be 
used for saving comparison time. The function closed 
checking returns true only when there is no existing CFI Z 
in the CFI-tree such that Z is a superset of Y and the count 
of Y is equal to or greater than the count of Z. 
 

 
Figure 7   FP Close Algorithm 

By a  analysis, we can estimate the total memory 
requirement for running FPclose on a data set. If the tree 
that contains all CFIs needs to be stored in memory, the 
algorithm needs space approximately equal to the sum of the 
size of the first FP-tree and its CFI-tree. In addition, as  for 
mining MFIs, for each CFI, by inserting only part of the CFI 
into CFI-trees, less memory is used and the implementation 
is faster than the one that stores all complete C FIs. Fig. 9 
shows the size-reduced CFI-tree for ; corresponding to the 
data set in Fig. 1.In this CFI-tree, only 6 nodes are inserted, 
instead of 15 nodes in the complete CFI-tree in Fig. 6b. 
 
3. FI Mining 
In the section , we studied the performance of FP-growth* 
by comparing it with the original FP-growth method [3], 
[4], kDCI [13], dEclat [15], Apriori  and PatriciaMine [16]. 
To see the performance of the FP-array technique, we 
implemented the original FP-growth method on the basis of 
the paper [14]. The Apriori algorithm was implemented by 
Borgelt in [12] for FIMI ’03. The source codes of the other 
algorithms were provided by their authors. 

 
 
 
Figure 8 
 
 
Fig. 8 shows the time of all algorithms running on  
T100I20D200K. In the figure, FP-growth* is slower than 
kDCI, Apriori, and dEclat for high minimum support. For 
low minimum support, FP-growth* becomes the fastest. The 
algorithm which was the fastest, dEclat, now becomes the 
slowest. The FP-array technique also shows its great 
improvement on the FP-growth method. FP-growth* is 
always faster than the FP-growth method and it is almost 
two times faster than the FP-growth method for low 
minimum support. When the minimum support is low, it 
means that the FP-tree is bushy and wide and the FP-array 
technique saves much time for traversing the FP-trees. 
 
We can see that FP-growth* and the FP-growth method 
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unfortunately use the maximum amount of memory. Their 
memory consumption is almost four times greater than the 
data set size. Since the FP-growth* and FP-growth methods 
consume almost the same amount of memory, it means that 
thememoryspent onthe FP-array technique is negligible. The 
memory is mainly used by FP-trees constructed in the FP-
growth method. Fig. 9 shows the peak memory consumption 
of the algorithms on the synthetic data set. The FP-growth* 
and  the FP-growth method consume almost the same 
memory, their curves overlap again. In the figure, kDCI 
uses the lowest amount of memory when the minimum 
support is high. The algorithm dEclat also consumes far less 
memory than the other algorithms except kDCI. 
. 
 

 
Fig 9 Memory consumption of mining of FIs  on T100120D200K. 
 
4  COMPARISON 
 
Comparing Fig. 8 with Fig. 9, we also can see that 
FP-growth* and the FP-growth method still have good 
speed 
even when they have to construct big FP-trees. We also can 
see from the figures that PatriciaMine consumes less 
memory than FP-growth*. This is because we implemented 
FP-growth* by a standard trie. On the other hand, in 
PatriciaMine, the FP-tree structure was implemented 
as a Patricia trie, which will save some memory. 
 
 5  SCALABILITY 
 
Fig 10 shows the speed scalability of all algorithms on 
synthetic data sets. The same data sets were used in 
for testing the scalability of all algorithms for mining all 
frequent item sets. Fig 10 shows that FP-max* is 
also a scalable algorithm. Runtime increases almost 
five times when the data size increases five times. The 
figures also demonstrate that other algorithms have good 
scalability. No algorithms have exponential runtime increase 
when the data set size increases. 
 

 
 
Fig 10 Scalability of runtime  of mining MFIs 
 
FP-max* possesses good scalability of memory 
consumption as well. Memory consumption grows from 76 
megabytes to 332 megabytes when data size grows from 16 
megabytes to 80 megabytes. All algorithms have similar 
scalability on synthetic data sets. 
 
 6   CONCLUSIONS AND FUTURE WORK 
 

Support 
Execution 
time of 
AprioriT  

Execution 
time of  
DIC  

Execution 
time of  
FP-
Growth  

50  187ms  226754ms  94ms  

60  110ms  184297ms  74ms  

70  78ms  161265ms  46ms  

80  47ms  106953ms  32ms  

90  32ms  74984ms  31ms  

 
 
We  introduced a  Frequent Pattern -array technique which 
allows using frequent Pattern -trees more efficiently when 
mining frequent item sets. Our technique mainly reduces the 
time spent on traversing FP-trees, and works especially well 
for sparse data sets when compared to dense data . By using 
the FP-array technique into the FP-growth method, the FP-
growth* algorithm for mining  frequent item sets has been 
introduced. Then we have been presented some new 
algorithms for mining maximal and closed frequent item 
sets. To mine maximal frequent item sets, we have used  our 
earlier algorithm FP-max to FP-max*. FP-max* not only 
uses the FP- array technique, but also an effective 
maximality checking approach. For the maximality testing, 
a variation on the FP-tree, called an MFI-tree was 
introduced for keeping track of all MFIs. In FP-max*, a 
newly found FI is always compared with a small set of 
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MFIs that are stored ina local MFI-tree, thus making 
maximality-checking very efficient. For mining closed 
frequent item sets we gave the FPclose algorithm. In this 
algorithm, a CFI-tree, another variation of the FP-tree, is 
used for testing the closedness of frequent item sets. For all 
of our algorithms we have introduced several optimizations 
for further reducing their running time a nd memory 
consumption. 
Both our experimental results and the results of the 
independent experiments conducted by the organizers of 
FIMI ’03 [12]  show that FP-growth*, FP-max*, and 
FPclose are Among the best algorithms for mining frequent 
item sets. 
 
The algorithms are the fastest algorithms for many cases. 
For sparse data sets, the algorithms need more memory 
than other algorithms because the FP-tree structure needs a 
large amount of memory in these cases. The experimental 
results given in this paper show the success of our 
algorithms, the problem that FP-growth*, FP-max* and 
FPclose consume lots of memory when the data sets are 
very sparse still needs to be solved. Consuming too  
much memory decreases the scalability of the algorithms, a 
Patricia Trie to implement the FP-tree data structure could 
be a good solution for the problem. 
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